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Abstract
According	 to	 the	 CDC,	 both	 Pfizer	 and	 Moderna	 COVID-	19	 vaccines	 contain	
nucleoside-	modified	messenger	RNA	 (mRNA)	encoding	 the	viral	 spike	glycoprotein	
of	severe	acute	respiratory	syndrome	caused	by	corona	virus	(SARS-	CoV-	2),	admin-
istered	via	intramuscular	injections.	Despite	their	worldwide	use,	very	little	is	known	
about	 how	 nucleoside	 modifications	 in	 mRNA	 sequences	 affect	 their	 breakdown,	
transcription and protein synthesis. It was hoped that resident and circulating im-
mune	cells	attracted	to	the	injection	site	make	copies	of	the	spike	protein	while	the	
injected	mRNA	degrades	within	a	few	days.	It	was	also	originally	estimated	that	re-
combinant	spike	proteins	generated	by	mRNA	vaccines	would	persist	in	the	body	for	
a	few	weeks.	In	reality,	clinical	studies	now	report	that	modified	SARS-	CoV-	2	mRNA	
routinely persist up to a month from injection and can be detected in cardiac and 
skeletal	muscle	at	sites	of	inflammation	and	fibrosis,	while	the	recombinant	spike	pro-
tein may persist a little over half a year in blood. Vaccination with 1- methylΨ	(pseu-
douridine	enriched)	mRNA	can	elicit	cellular	immunity	to	peptide	antigens	produced	
by +1	 ribosomal	 frameshifting	 in	major	 histocompatibility	 complex-	diverse	 people.	
The	translation	of	1-	methylΨ	mRNA	using	liquid	chromatography	tandem	mass	spec-
trometry	identified	nine	peptides	derived	from	the	mRNA	+1	frame.	These	products	
impact	on	off-	target	host	T	cell	 immunity	that	include	increased	production	of	new	
B	cell	antigens	with	far	reaching	clinical	consequences.	As	an	example,	a	highly	sig-
nificant	increase	in	heart	muscle	18-	flourodeoxyglucose	uptake	was	detected	in	vac-
cinated	patients	up	to	half	a	year	(180 days).	This	review	article	focuses	on	medical	
biochemistry,	proteomics	and	deutenomics	principles	that	explain	the	persisting	spike	
phenomenon in circulation with organ- related functional damage even in asympto-
matic	 individuals.	Proline	and	hydroxyproline	residues	emerge	as	prominent	deute-
rium	(heavy	hydrogen)	binding	sites	in	structural	proteins	with	robust	isotopic	stability	
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1  |  INTRODUC TION

The	Pfizer-	BioNTech	COVID-	19	Vaccine	(also	known	as	BNT162b2	
and	 boosters)	 and	Moderna	COVID-	19	 vaccine	 (messenger	 RNA	
[mRNA]-	1273	 and	 boosters)	 work	 by	 introducing	 a	 modified	
mRNA	molecule	that	codes	for	the	corona	virus	spike	protein	via	
intramuscular injections.1 Resident and circulating immune cells 
attracted to the injection site and regional lymph nodes translate 
the	 injected	 mRNA	 into	 copies	 of	 the	 spike	 protein.2,3 Shortly 
after,	 the	 injected	mRNA	degrades	due	 to	 the	 inherent	 intramo-
lecular	fragility	of	RNA,	usually	within	a	few	days	in	the	injected	
muscle and regional lymph nodes, as animal studies suggested. 
The	Infectious	Disease	Society	of	America	estimates	that	recom-
binant	spike	protein	fragments,	which	are	generated	by	host	cells	
from	 the	mRNA	 in	 the	 vaccines,	may	 last	 up	 to	 a	 few	weeks.	 In	
fact, clinical studies report that severe acute respiratory syn-
drome	caused	by	corona	virus	(SARS-	CoV-	2)	mRNA	vaccines	com-
monly	persist	up	to	30 days	from	injection	in	humans	and	can	be	
detected in heart muscle at healing infarcts.4	Recombinant	spike	
protein may persist in the circulation up to a little over half a year 
(187 days).5	 In	 the	 Pfizer-	BioNTech	 (BNT162b2-		 Comirnaty)	 and	
Moderna	(mRNA-	1273)	injectables,	uridine's	nitrogen	bases	were	
replaced by pseudouridine and methylated, hence they are called 
N1-	methylpseudouridine	(m1Ψ).	It	has	been	shown	that	this	mod-
ification produced more stable nitrogen bases6 and resulted in 
less immunogenicity.7	This	is	because	the	substitution	of	uridines	
by	 pseudouridines,	 or	 (even	 better)	 with	 methyl-	pseudouridine,	
bypasses	 surveillance	 as	 foreign	mRNA	 from	 toll-	like	 receptors.	
Despite	 the	 fact	 that	 the	 two	mRNA	 preparations	 are	 different	
(due	 in	part	 to	different	codon	optimization	schemes),	 they	both	
produce	 the	 full-	length	 recombinant	 spike	 protein	 that	 differs	
from	the	wild	type	spike	protein	only	by	two	adjacent	amino	acid	
substitutions	at	positions	986	and	987,	respectively.	In	K986P	the	
amino	acid	lysine	and	in	V987P	the	amino	acid	valine	is	replaced	
by a proline amino acid, each.8,9 Proline substitutions readily stabi-
lize	the	spike	protein's	conformation	for	cellular	prefusion	by	abol-
ishing	a	key	 tryptic	 cleavage	 site.	As	a	 result,	 tryptic	digestion10 
opens roads to mass spectrometry analyses that readily differen-
tiate	among	synthetic	(recombinant)	spike	protein	fragments,	orig-
inated	from	translations	of	the	injected	mRNA	vaccines,	compared	
to	the	natural	wild-	type	(WT)	spike	of	the	SARS-	COV-	2	virus,	cir-
culating in biological fluids of humans.5

Translational	and	clinical	 studies	have	established	 that	decay	
modeling	of	injected	mRNA	wrapped	in	liposomes	and	that	of	the	

deriving	 spike	 protein	 is	 extended	 beyond	 what	 was	 expected	
from	 in	vitro	culturing	and	animal	 studies.	Analytical	efforts	de-
scribed above indicate significantly longer decay times of both 
the	 injected	mRNA	 and	 its	 recombinant	 spike	 protein	 in	 tissues	
and the circulation. In addition, there are documented pathologies 
in	 asymptomatic	 patients	 with	 regard	 to	 mRNA	 immunizations.	
The	 distribution	 and	 persistence	 of	 SARS-	CoV-	2	mRNA	 vaccine	
in	human	tissues	were	unclear	until	specific	quantitative	reverse	
transcription polymerase chain reaction- based assays detected 
each	mRNA	vaccine	in	the	axillary	lymph	nodes	in	the	majority	of	
patients as well as in the myocardium in a subset of patients vacci-
nated	within	30 days	of	death.	These	results	strongly	suggest	that	
SARS-	CoV-	2	mRNA	vaccines	routinely	persist	up	to	30 days	from	
vaccination in ipsilateral lymphatic organs and can be detected 
also in the heart.4

Mass	spectrometry	examination	of	human	blood	specimens	re-
ported	the	presence	of	specific	fragments	of	the	recombinant	spike	
protein	after	receiving	mRNA-	based	vaccines	in	50%	of	samples	up	
to	187 days	after	vaccination.5 Suggested mechanisms included the 
integration	of	the	stable	injected	mRNA	into	the	genome	of	somatic	
cells,11,12 which may lead to the transcription and translation of a 
constitutively	active	spike	protein	pool.	The	continued	persistence	
and	uncertain	fate	of	sustained	mRNA	and	spike	formations	are	of	
utmost importance due to morphological and functional pathologies 
increasingly reported in the medical literature, which this viewpoint 
article addresses.

2  |  STABLE MESSENGER RNA s AND 
EUK ARYOTE CELL TR ANSFORMATION

Stabilized, then injected ribonucleic acids, which remain in various 
tissues	for	up	to	30 days,	can	readily	serve	as	templates	for	the	pro-
miscuous	reverse	transcriptase	function	of	human	DNA	polymerase	
theta	(Polθ)	(EC	no.	2.7.7.7)	that	causes	DNA	transformation	involved	
in cancer formation.11	 In	 fact,	 unlike	 most	 Pol	 I	 enzymes,	 Polθ is 
highly error- prone to carry out translesion synthesis and promotes 
microhomology-	mediated	 end-	joining	 of	 double-	strand	 breaks	
(DSBs)	with	high	RNA	fidelity.	For	the	above	reasons,	Polθ is highly 
expressed	 in	 many	 cancer	 cells13 with significant aneuploidy and 
a poor clinical outcome.14 It is also critically important to consider 
during	 injectable	modified	mRNA	development	 efforts	 that	water	
molecules control the rate constant for nucleotide incorporation in 
the	pre-	steady	state	of	RNA	and	DNA	polymerases,15 including that 

that	resists	not	only	enzymatic	breakdown,	but	virtually	all	(non)-	enzymatic	cleavage	
mechanisms	known	in	chemistry.

K E Y W O R D S
acid	hydrolysis,	deutenomics,	deuterium,	DNA	polymerase	theta,	hypoxia,	modified	mRNA,	
recombinant	spike	protein,	SARS-	CoV-	2
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of Polθ.	This	fact	is	fundamental	to	better	understand	how	the	sta-
ble	heavy	hydrogen	isotope	called	deuterium	(2H-	D)	carried	in	water	
molecules	of	 various	 cell	 compartments	 stabilizes	mRNA	vaccines	
with	undesired	DNA	transforming	effects.

The	above	discoveries	enlighten	 two	basic	 facts	 related	 to	nu-
cleic	 acid	 chemistry	 and	 their	 use	 in	medicine:	 (A)	 RNA	 and	DNA	
polymerases are inducible by nucleic acid template architectures of 
various	 pathogenic,	 exogenous	 and/or	 endogenous	 origins,16 and 
(B)	 RNA17	 and	 DNA18 templates harbor significant 2H- D- related 
conformational	 stability	and	 resistance	against	degradation.	There	
is,	for	example,	random	integration	frequently	occurring	at	DSBs	in	
the genome. During the interphase and facultative heterochromatin 
formation	in	the	cell	cycle,	ionizing	radiation,	viral	or	modified	RNA	
interference with 2H- D- meditated genomic stability increases the 
frequency	of	integration.11	This	mechanism	supports	the	previously	
suggested	mRNA	 integration	 by	 the	 facultative	 reverse	 transcrip-
tase	function	of	DNA	polymerase	enzymes	in	some	cells.5

2.1  |  Half- lives and the biological safety of RNA 
species in human tissues

Stabilizing	 RNA	 by	 base	 structural	 modifications	 disrupts	 the	 in-
herent instability of messenger ribonucleic acid templates with far 
reaching	biological	safety	consequences.	Transcriptionally	produced	
natural	mRNAs	 including	5′- capped and/or 3′- terminated polyade-
nylated	tail	structures	show	16.4 h	half-	lives	in	human	blood,	which	
is	the	shortest	among	circular	RNAs	(circRNAs;	24.56 ± 5.2 h),	 long	
non-	coding	 RNAs	 (lncRNAs;	 17.46 ± 3.0 h)	 and	 microRNAs	 (miR-
NAs;	16.4 ± 4.2 h).	Quantitative	experiments	 involving	translational	
events	 related	 to	 mRNAs	 should	 be	 completed	 within	 2 h.19 For 
biological safety of preventing uncontrolled multiple translations, 
mRNA	degradation	occurs	by	spontaneous	cleavage	of	the	pentose	
sugar	backbone	moiety	via	its	phosphodiester	linkages	and	intramo-
lecular transesterification reactions.20 It is apparent that the proto-
nation or deuteration state of the nucleophilic 2′-	hydroxyl	group	is	
a	 critical	 determinant	 of	 the	 rate	 of	 RNA	 cleavage.	 The	 exact	 ge-
ometry of the chemical groups that compose each internucleotide 
bond has an important influence on cleavage activity as well. Under 
a broad range of physiological conditions, the rapid and spontaneous 
breakdown	of	RNA	occurs	to	preserve	genetic	integrity	by	prevent-
ing the reverse transcriptase action of polymerase enzymes at its 
template	 substrate	 level,	 that	 is,	 to	 promptly	 deplete	mRNA	 tem-
plates	after	translation,	in	mammalian	cells.	Additional	mechanisms	
that	 rapidly	 dismantle	RNA	molecules	 include	nucleases	 to	 cleave	
phosphodiester bonds between nucleotides, and ribozymes, in-
volved in splicing. Mass worldwide deliveries of injectable modified 
mRNA	species	with	unpredictable	half-	lives,	some	close	to	30 days	in	
human lymphatic tissues and heart muscle,4	raise	serious	questions	
about the biological safety of translatable ribonucleotide therapies. 
The	 synthetic	 mRNAs	 such	 as	 those	 expressing	 the	 SARS-	CoV-	2	
spike	protein	are	equipped	with	analogue	caps	that	 further	 inhibit	
physiological	mRNA	decaying	and	recycling	mechanisms	in	humans.

2.2  |  Stable mRNAs, tumor cell 
metabolism, and deuterium

Nutritional	 and	 environmental	 factors	 that	 limit	 biological	 plastic-
ity,	 consistent	with	 slow	mRNA	 turnover	and	degradation,	heavily	
involve	 intracellular	 water	 chemistry	 and	 deutenomics.	 A	 recent	
report corroborates the prime role of intracellular water plasticity 
in the transformation between a normal and cancerous phenotype 
of human cells with aneuploidy.21	 While	 the	 dynamics	 of	 hydra-
tion	(bulk)	water	molecules	remain	virtually	unaffected	when	going	
from	healthy	to	cancer	cells,	structured	cytoplasmic	water	(particu-
larly	 the	rotational	motions)	undergoes	significant	plastic	 transfor-
mation upon normal- to- cancer transition. Stable ribonucleotide 
templates	are	required	and	available	in	processed	carbohydrate	de-
pendent deuterated water loaded cancer cells either by glycolytic 
activity with semi- deuterated metabolic water formation22 or by 
mitochondrial damage that compromises 2H-	D-	depleting	proton	ex-
change	reactions	in	the	Krebs–Szent–Györgyi	cycle	during	Warburg	
fermentation.23–25

Our review of the deutenomics literature using novel compounds 
that	target	RNA	virus	replication	and	SARS-	COV-	2	vaccine	develop-
ment	indicates	that	kinetic	isotope	effects	of	2H- D overshadow such 
efforts via noncovalent interactions between biomolecules, includ-
ing	hydrogen	bonding	and	 ionic	 and	van	der	Waals	 interactions.26 
For	 example	 aurintricarboxylic	 acid	 (ATA;	 Chemical	 Abstracts	
Service	Registry	Number	4431-	00-	9)	strongly	inhibits	ribonuclease	
A	 (RNase;	 bovine,	 pancreatic)	 as	 a	 rapid	mRNA	breakdown	 inhibi-
tor27,28 for the development of such vaccines. On the other hand, in 
its	deuterated	form	aurintricarboxylic	acid	readily	binds	to	the	en-
zyme's	active	site	just	as	RNA	does,	exerting	a	3-		to	6-	fold	inhibitory	
effect	on	RNA	breakdown.29	This	may	contribute	to	the	persistence	
of	stable	injected	RNAs	with	unpredictable	duration,	while	the	po-
tential medium-  to long- term complications of such therapies may be 
devastating in humans.

Vaccines and other therapeutics are now being developed 
against	single-	stranded	positive-	sense	enveloped	RNA	(+ssRNA)	vi-
ruses such as polio-  and yellow fever using 2H-	D	oxide	(heavy	water)	
as the stabilizing solvent.30	Deuterons	not	only	preserve	RNA	tem-
plates to persist in tissues and/or circulation using various mecha-
nisms highlighted above but also trigger conformational changes in 
polymerase enzyme palm subdomains, catalytic sites and function, 
which may adversely affect cancer incidence and outcomes, among 
that	of	other	diseases,	after	stable	mRNA	injections.

2.3  |  Long persistence of injected mRNA with 
cardiac cell toxicity

Clinical	studies	report	that	SARS-	CoV-	2	mRNA	vaccines	persist	up	
to	30 days	in	lymph	nodes	and	the	heart	muscle	at	inflammation,	fi-
brosis, and healing infarct sites.4	Spikevax	(mRNA-	1273,	Moderna)	
and	Comirnaty	(BNT162b2,	Pfizer/Biontech)	vaccines	possess	car-
diac side effects, which for the most part can be classified by their 
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clinical symptoms as myo-  and/or pericarditis. Cardiac complica-
tions	can	be	caused	by	both	mRNA-	1273	and	BNT162b2.31 More 
specifically,	mRNA-	1273	 induces	arrhythmias	as	well	as	 irregular	
contractions	 associated	with	 localized	 calcium	 transients.	 These	
indicate significant dysfunction of the cardiac ryanodine recep-
tor	(RyR2)	after	mRNA-	1273	injections.	 In	contrast,	an	increased	
protein	kinase	A	(PKA)	activity	was	noted	in	cardiomyocytes	using	
BNT162b2.	Both	RyR2	impairment	and	sustained	PKA	activation	
may	significantly	increase	the	risk	of	acute	cardiac	events31 due to 
the	 long-	term	metabolic	 and	 inotropic	weakening	of	 cardiomyo-
cytes as detailed below.

3  |  L ATENT SPIKE PROTEIN' S HARM ON 
THE C ARDIAC FUNC TION

Not	only	may	the	injected	mRNA	molecules	in	vaccines	persist	for	
months,	but	also	their	recombinant	spike	protein	products	can	re-
main	in	circulation	for	up	to	a	little	over	half	a	year	(187 days).5	This	
fact	deserves	a	careful	 look	due	to	potential	direct	cardiotoxicity.	
Reports	show	a	comparable	rate	of	mRNA	vaccine-	related	myocar-
ditis	after	the	second	dose	of	the	mRNA	vaccine	 in	8	to	27	cases	
per	 100 000	male	 individuals	with	 that	 of	 59	 to	64	 cases	 follow-
ing	 SARS-	CoV-	2	 infection	 (between	 12	 and	 29 years	 of	 age).32	 A	
study	 including	 303	 nonvaccinated	 and	 700	 vaccinated	 patients	
showed that vaccinated patients had overall higher myocardial 18F- 
deoxyglucose	(FDG)	uptake,	an	indicator	of	severe	cardiac	muscle	
metabolic insufficiency typically as a result of ischemia, regardless 
of	sex	or	age.	Furthermore,	severely	increased	myocardial	18F- FDG 
uptake	was	observed	in	patients	imaged	after	their	second	vaccina-
tion	with	increased	ipsilateral	axillary	lymph	node	uptake	when	com-
pared with nonvaccinated patients.33 Important outcomes of these 
studies	are	(A)	the	highly	significant	increase	(p < 0.001;	one	occur-
rence	by	chance	within	a	1000-	case	cohort)	in	heart	muscle	stand-
ard	 deoxyglucose	 uptake	 value	 (SUV)	 by	 about	 40%	 on	 average,	
and	(B)	increased	glucose	uptake	was	detected	in	non-	symptomatic	
mRNA	injected	individuals	up	to	half	a	year	(180 days)	after	last	in-
jection.	The	latter	finding	indicates	that	not	only	do	mRNA	vaccina-
tions cause asymptomatic myocardial inflammation, but the effect 
continues	long	after	vaccination	at	6 months	later	without	apparent	
clinical symptoms.34	The	increasing	number	of	clinically	challenging	
cases of cardiovascular complications with obscure pathologies in 
modified	mRNA	injected	individuals35–39 clearly indicates the need 
to address mechanisms and counter actions to improve outcomes 
with the imminent suspension of such injections.40

3.1  |  Deuterated proline- related structural 
rigidity of the pathogenic spike protein

The	primary	goal	of	this	viewpoint	article	 is	to	 link	the	medical	bio-
chemistry, proteomics and deutenomics- related evidence to the path-
ogenic	 role	 of	 proline	 substitutions	 in	 recombinant	 spike	protein	 as	

potential 2H-	D	(heavy	hydrogen)	binding	sites	with	prominent	isotopic	
stability,	persistence	and	pathogenicity.	Injectable	mRNA	preparations	
produce	 the	 full-	length	 recombinant	 spike	protein	 that	differs	 from	
the	WT	spike	protein	only	by	two	adjacent	amino	acid	substitutions	at	
positions	986	and	987,	respectively.	In	short,	one	adjacent	lysine	and	
valine amino acids are replaced by a proline amino acid, each.8,9

(Hydroxy)Proline	substitutions	introduced	by	modified	mRNA	not	
only	render	trypsin	digestion	ineffective	to	break	down	spike	proteins	
but are also targets of 2H- D accumulation as much as 2.5- fold above 
natural 2H-	D	 enrichment	 under	 extreme	 biological	 conditions.35 
Sustained	 presence	 of	 pathogenic	 spike	 proteins	 after	 deuterated	
proline	 substitutions	 due	 to	 persisting	 modified	 mRNA	 injections	
with latent local and/or systematic inflammation should be consid-
ered	 a	 risk	 factor	 in	 vaccine	 developments	 for	 undesirable	 severe	
long-	lasting	complications	and	morbidities.	Although	the	precise	bio-
chemical	mechanisms	are	still	in	search	and	most	likely	involve	rapid,	
compartmentalized	and	reversible	water	proton	exchange	isomeriza-
tion reactions with significant 2H- D discrimination properties during 
aldose-	ketose	transformations	 in	glycolysis,23,24 2H- D accumulation 
in	(hydroxy)proline	readily	render	such	proteins	almost	impossible	to	
destroy by biological and inorganic chemical reactions.

Carbon- bound 2H- D of proline is stable under the conditions of 
acid	hydrolysis.	When	a	sample	of	DL-	proline	containing	17.0	atom	per-
cent	D	was	boiled	with	20%	HCl	for	3 days,	the	proline	isolated	from	
the reaction solution was found to still contain 16.2 atom percent D. 
Thus,	even	under	these	drastic	conditions,	the	exchange	of	deuterons	
with protons, if there is any, is very slow in this amino acid.36	The	long-	
lasting	collagen	protein	preserving	effect	of	(deuterated)	proline	is	well	
known.35 It is consistent with a previous model of pseudo- uridines at 
particular	positions	to	 induce	the	formation	of	a	stable	spike	protein	
constitutively	and	exclusively	via	introducing	double	adjacent	proline	
substitutions at critical amino acid positions into this pathogenic pro-
tein.5	The	incorporation	of	two	proline	residues	surpasses	resistance	
to degradation of peptides stabilized by amidation or acetylation, two 
approaches that are routinely utilized to stabilize drug peptides.41

3.2  |  Cell transforming effect of proline 
substitutions in spike protein

Proline substitutions in all circulating proteins introduce fundamental 
biological	changes	due	to	altered	folding	and	limited	breakdown	by	
exo-		and	endopeptidase	catalyzed	enzymatic	reactions.	In	one	simpli-
fied view, proline disrupts protein secondary structure by inhibiting 
the	backbone	to	conform	to	an	alpha-	helix	or	beta-	sheet	conforma-
tion.37 In turn, proline possesses multifaceted roles in cell behavior 
and contributes to the progression of devastating pathologies such 
as fibrosis and metastatic cancer.38 Proline diminishes the ability of 
virtually all endopeptidases including trypsin, chymotrypsin, elastase, 
thermolysin,	and	pepsin	to	cleave	adjacent	peptide	bonds.	As	a	result,	
biological	 properties	 of	 the	 recombinant	 spike	 protein	with	 vicinal	
proline substitutions can act as small proline- rich proteins with struc-
tural properties shifted towards that of the cornified envelope, which 
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provides	structural	stability	to	exert	biological	barrier	functions	and	
is	 recognized	 as	 a	 marker	 for	 terminal	 squamous	 cell	 differentia-
tion.39 Proline- rich proteins, especially adjoining proline structures, 
are	rarely	found	in	normal	non-	squamous	tissues,	and	their	increased	
expression	has	been	 reported	 in	 some	 types	of	non-	squamous	cell	
carcinoma, such as colorectal, breast and pancreatic cancer.40,42 
Proline- rich peptides and proteins are involved in the pathogenesis 
of	 non-	squamous	 cellular	 transformation	 that	 may	 lead	 to	 unpre-
dictable biological behaviors by worsening the prognosis of cancer. 
Aggressive	malignancies	 take	up	proline	 rich	proteins,	 such	 as	 col-
lagen fragments, under nutrient limited conditions, whereby mostly 
protein- derived proline contributes to cancer cell metabolism.43

The	 administration	 of	 proline-	stabilized	 immunoglobulin	 prod-
ucts in order to boost immune functions in patients with defects in 
proline metabolism are contraindicated.44	This	further	highlights	the	
close relationship between proline substitutions and potential deu-
teration with a crucial role in the long persistence of recombinant 
spike	proteins	that	may	collectively	act	in	favor	of	proline	rich	extra-
cellular	matrix	contamination.	The	cell	transforming	effect	of	recom-
binant	spike	proteins	represents	a	nutrient	reservoir	for	tumor	cells	
highlighting the need to reevaluate the substitutions of this amino 
acid	 in	mRNA-	based	vaccine	and	drug	development	efforts	 in	 the	
future.	This	 is	more	so	as	clinical	and	translational	observations	 in	
mRNA	vaccinated	individuals	reveal	numerous	pathologies	involving	
multifocal necrotizing encephalitis,45 acute autoimmune myocardi-
tis,46	 acute	 (epi-	)myocarditis	 with	 patchy	 interstitial	 myocardial	 T-	
lymphocytic infiltration, mild myocyte damage,47 myocarditis with 
regional dysfunction48	and	unbound	spike	antibodies	of	postvaccine	
myocarditis49; which are all very severe conditions.

3.3  |  Frameshifting during mRNA transcription 
triggers off- target immunity

Surprisingly	little	is	known	about	how	ribonucleotide	modifications	af-
fect	protein	synthesis	despite	their	widespread	use	in	mRNA	vaccines.	
A	very	recent	study	found	that	there	is	a	large	increase	in	ribosomal	+1 
frameshifting during translation of 1- methylΨ	(pseudouridine)	mRNA,	
which	produced	both	the	expected	in-	frame	product	and	two	addi-
tional bands at higher molecular weight.50	After	vaccination	of	mice	
with	BNT162b2	there	was	an	apparent	T	cell	 response	 to	both	 the	
in-	frame	SARS-	CoV-	2	spike	protein	and	that	of	the	+1 frameshifted 
products.	The	clinically	approved	SARS-	CoV-	2	mRNA	vaccines	also	
produced +1 ribosome frameshifting during recombinant antigen 
mRNA	translation	that	readily	elicited	off-	target	cellular	immune	re-
sponses.	 The	 study	 found	 that	 responses	 to	+1	 frameshifted	 spike	
peptides were significantly increased in vaccinated mice compared 
to untreated mice, which suggested that +1 frameshifted products 
encoded	in	BNT162b2	spike	mRNA	are	T	cell	antigens	for	inbred	mice.

In	 a	 subsequent	 investigation	of	21	 individuals	 vaccinated	with	
BNT162b2	and	20	controls	there	was	a	significantly	higher	interferon	
(IFNγ)	response	to	+1	frameshifted	antigen	in	the	BNT162b2	vaccine	
group	while	 there	was	no	association	between	T	 cell	 responses	 to	

+1	frameshifted	antigen	and	age,	sex	or	HLA	subtype.50 Cellular im-
mune responses to +1 frameshifted products were observed only in 
individuals	vaccinated	with	BNT162b2.	These	data	suggest	that	vac-
cination with 1- methylΨ	mRNA	can	elicit	cellular	immunity	to	peptide	
antigens produced by +1 ribosomal frameshifting in major histocom-
patibility	 complex	 (MHC)-	diverse	 people	 and	 MHC-	uniform	 mice.	
Further studies to gain insight into +1 ribosome frameshifting during 
translation of 1- methylΨ	mRNA	using	liquid	chromatography	tandem	
mass	 spectrometry	 (LC–MS/MS)	 identified	a	 library	of	 six	 in-	frame	
peptides	and	nine	peptides	derived	from	the	mRNA	+1	frame.	All	in-	
frame	peptides	were	mapped	to	the	N-	terminal	region	of	the	spike	
protein, whereas +1 frameshifted peptides were mapped down-
stream.	 These	 data	 demonstrated	 that	 the	 elongated	 polypeptide	
was	indeed	a	chimeric	product	consisting	of	in-	frame	N-	terminal	res-
idues and +1	frameshifted	C-	terminal	residues.	Alongside	the	above	
impact	on	host	T	cell	 immunity,	 the	off-	target	effects	of	 ribosomal	
frameshifting	could	 include	 increased	production	of	new	B	cell	an-
tigens	with	far	reaching	medical	consequences	that	explain	clinically	
observed increases in muscle inflammation, or the highly significant 
increase	in	glucose	uptake	of	heart	muscle	cells	as	described	above.

4  |  SUMMARY AND CONCLUSIONS

Trends	 in	mRNA	vaccine	 and	medicine	development	 efforts	 ignore	
many basic principles of medical biochemistry, physiology, proteomics 
and	deutenomics.	Although	in	vitro/vivo–transcribed	mRNAs	encod-
ing clinically important proteins have broad potentials for therapeu-
tic applications,51–53	mRNA	modified	by	pseudouridination	and	other	
changes, including methylation, is infeasible for clinical use because of 
its long- lasting and potentially permanent and immunostimulatory na-
ture.	Nucleoside	modification	is	believed	to	be	an	effective	approach	
to	 enhance	 stability	 by	making	 the	 product	 resistant	 to	 ribonucle-
ases.	As	a	 result,	 there	 is	 increased	translational	capacity	of	mRNA	
while	potentially	diminishing	its	 immunogenicity	in	vivo.	The	persis-
tent	nature	of	mRNA	coding	for	SARS-	CoV-	2	spike	protein	provides	
a	dangerously	long	exposure	to	an	unlimited	dose	of	this	pathogenic	
protein, and thus, it needs re- evaluation for continued human use. 
We	have	provided	the	molecular	basis	for	a	wide	distribution	of	inju-
ries,	disabilities,	and	deaths	resulting	from	spike	protein-	related	dis-
eases, which derive from ill- advised continued use of these products. 
Understanding the above overarching proteomics and deutenomics 
mechanisms, especially in cell growth and transformation,25 in modi-
fied	mRNA	vaccines-	related	severe	adverse	events	 is	necessary	 for	
a	scientifically	informed	benefit/risk	evaluation	of	such	vaccinations.
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